Solar Integrated Battery Bank

Senior Design Team sddec22-02. A project for PowerFilm Solar

Carter McCarthy, John Fecht, Will Thorne, Nathan Harder, Jordan Hoosman Advised by: Cheng Huang - chengh@iastate.edu | Overseen by: Dan Stieler - dstieler@powerfilmsolar.com

Our Mission:

Redesign the LightSaver Max, to modernize the design. Provide our findings and recommendations for the next iteration of the LightSaver to PowerFilm.

Base Product: LightSaver Max

Original Design

Specifications

- A premium battery bank with a flexible solar panel attached
 2 input ports, and 3 output
 ports (5 total)
- 2 printed circuit boards (PCB)
- Fixed point power tracking
- 60Wh battery capacity
- 2 end caps / ends with ports

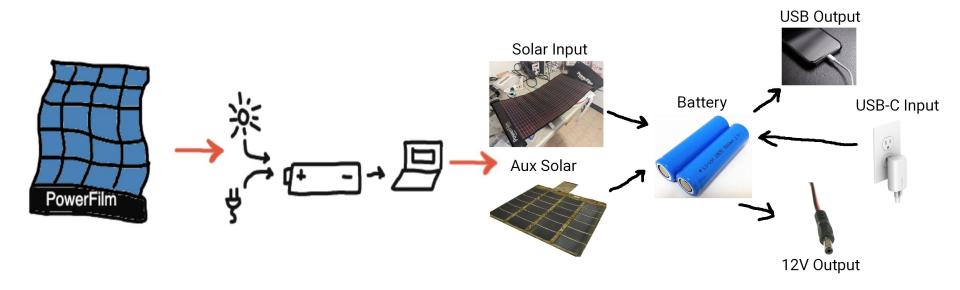
Original Design

Use and Users

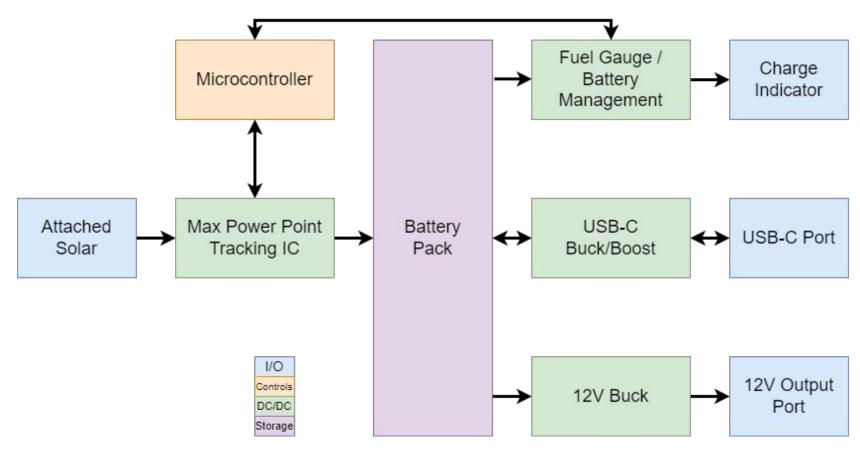
- Light weight, Portable, Durable
- Advertised to help charge mobile devices in a pinch, specifically branded towards backpackers and survivalists

Requested Improvements

Changes


- 3 input ports, and 3 output ports (4 total by use of 2 bi-directional USB-C's)
- 1 printed circuit board (PCB)
- Maximum power point tracking (MPPT)
- 85Wh battery capacity
- 1 endcap / end with ports

Changes - side by side


Previous Design	Future Design
2 input ports, and 3 output ports (5 total)	3 input ports, and 3 output ports (4 total by use of 2 bi-directional USB-C's)
2 printed circuit boards (PCB)	1 printed circuit board (PCB)
Fixed point power tracking	Maximum power point tracking (MPPT)
60Wh battery capacity	85Wh battery capacity
2 endcaps / ends with ports	1 endcap / end with ports

Design Plans

Conceptual Diagram

Block Diagram

What and Why

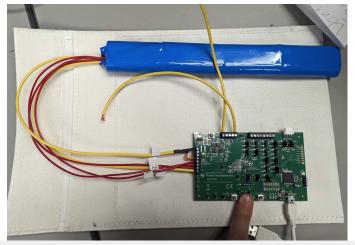
Batteries: 4s2p, li-ion

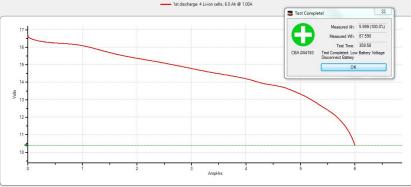
- Increased battery life
- Fast charging
- MPPT : custom design, fabricated
 - Increased efficiency of the solar panel

12V Buck/Boost : custom design

- Increased voltage output for loss compensation

USB-C PD : tps25750 (PD management), bq25792 (buck/boost)


- Standalone usb handshake


Microcontroller: nrf52832

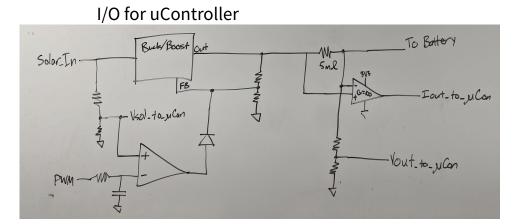
- Low-power, convenient DMA communication options

Implementation

Battery Implementation

Improvements

- Increased battery size and configuration
- Created battery management systems
- Provided fast charge option
- Designed compatible and tileable battery design


Testing

- Used evaluation board for testing purposes
- Utilized learning cycle to fine tune parameters
- Oscilloscope measurements
- Integration testing

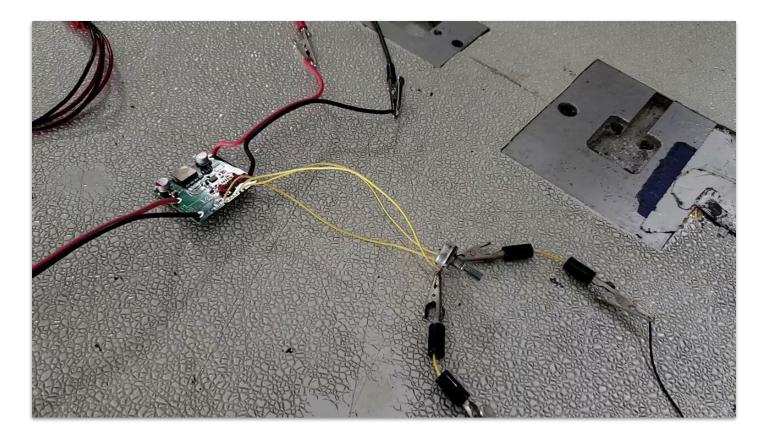
MPPT Implementation

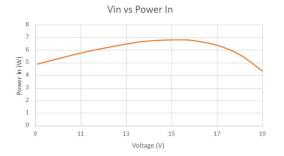
Implementation:

- Custom PCB Layout
- Buck/boost converter with altered feedback loop
- Vsolar, Vout, and Iout are all read from uController
- MPPT algorithm is used to determine MPP

Battery Output

LM34936


000000000


Solar Input

Testing:

- Use panels with previously tested MPP
- Load tester set to constant current
- Run the algorithm with the uController attached, see if it brings the attached solar to V_MPP

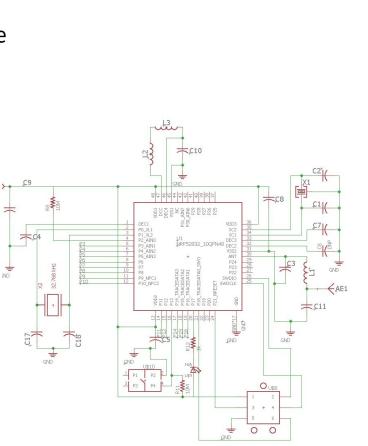
MPPT w/out uController

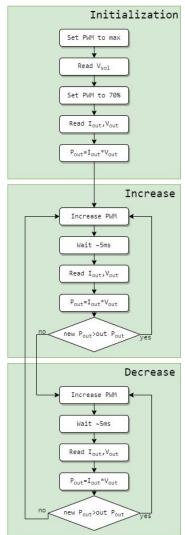
MPPT Implementation Continued

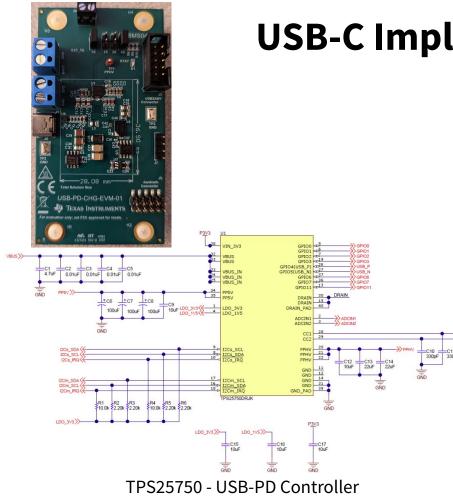
Results:

- MPPT was able to hold a stable set point voltage
- Output power increases as panel approaches MPP

Issues:

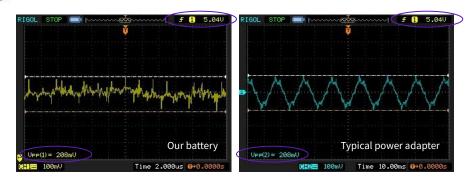

- Signals going to the microcontroller are extremely noisy
- Attempts to resolve:
 - LPF on signals going to microcontroller
 - Move all signal grounds to AGND from PGND
 - Increase input and output capacitance


Top and center: Input voltage vs Power in and Power out of MPPT Bottom: Signal noise observed on Iout line (Blue is prefiltered, yellow is post filtering)


Microcontroller Implementation

- Using I2C for battery/fuel gauge and PWM for MPPT
- MPPT algorithm implemented in software

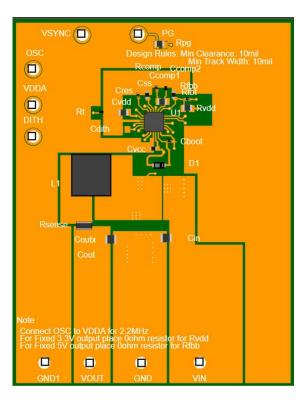
```
int MPPT_Calculate_Power() {
    int iout = analogRead(MPPT_PIN_IOUT);
    int vout = analogRead(MPPT_PIN_VOUT);
    return iout * vout;
}
ivoid MPPT_Init() {
    // Setup pins
    pinMode(MPPT_PIN_VOUT, INPUT);
    pinMode(MPPT_PIN_IOUT, INPUT);
    pinMode(MPPT_PIN_VSOLAR, INPUT);
    pinMode(MPPT_PIN_PWM, OUTPUT);
    // Set PWM to max
    analogWrite(MPPT_PIN_PWM, 12);
}
```

USB-C Implementation

- Handles the USB handshake

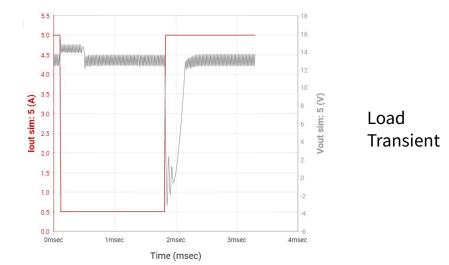
Including USB-C specification


- Standalone, doesn't need firmware dev. or uController intervention
- Directly interacts with BQ25792
 Buck/Boost

Learning Points

- Shipping Issues
 - Try, try, try again
- Implementation Troubles

12V Buck Intended Implementation



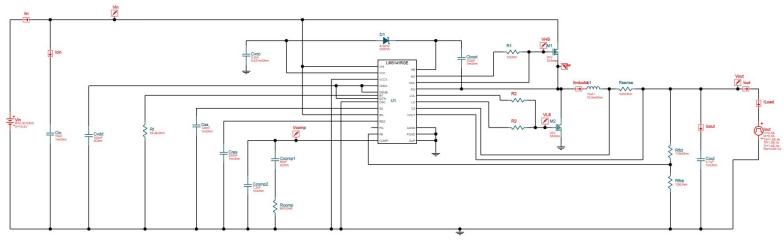
Improvements

Increased current output

Issues

- PCB fabricated May 2022 but never arrived
- Previous design was for 12V output but is now 13V

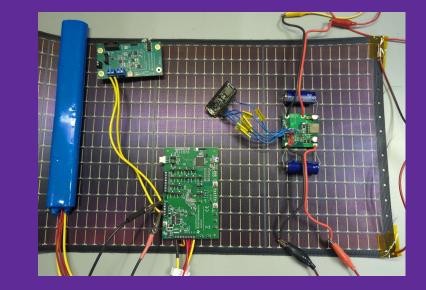
12V Buck Intended Implementation Cont.


How I would have...

Implemented

- Connected the grounds and Vin pins to the battery regulator

Tested


- Vary the input voltage between 14V and 16.8V while observing the output voltage and current to debug and determine efficiency

USB-C Testing Board

- USB-C-PD-DUO-EVM
 - A test board created for the sole purpose of testing source and sink through usb

Final Product

Completion Checklist (a list of all the things we finished)

- Battery pack
 - 4s2p battery pack assembled
 - Battery management IC
- MPPT
- Algorithm implemented and flashed to microcontroller
- Circuit designed, tested, modified
- Interconnect tested and working
- USB-C PD
 - USB-C Handshake and power delivery successfully implemented
- 12V Buck/Boost
 - Designed
 - Simulated
 - Part did not arrive

Contributions / Team Management

Members - Roles:

John Fecht - Team Leader and MPPT

Nathan Harder - DC/DC Converter and debugging

Carter McCarthy - battery and charge indicator

Jordan Hoosman - Micro controller

Will Thorne - Digital Communication Protocols and USB-C

Thank You! Questions?